-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Open
Labels
performanceissues related to performance regressionsissues related to performance regressions
Description
Describe the issue
Description
We observed a performance regression in the Clip operator for int64 data type with only minimum bound specified (no maximum bound) between ONNXRuntime v1.20.0 and v1.21.0.
Affected Operator
Clip
- Opset Version: 13
- Data Type: int64
- Configuration: min bound only (no max bound)
- Input Shape: [2, 3, 32, 32] (4D tensor)
- Regression: Performance degradation observed
Test Case Details
Test Case: clip_13_v2_clip_int64_no_max
Input:
-
X (input tensor):
- Shape:
[2, 3, 32, 32](4D tensor) - Data type: int64
- Total elements: 6,144
- Shape:
-
min (minimum bound):
- Shape:
[](scalar) - Data type: int64
- Value:
-100
- Shape:
-
max (maximum bound):
- Not provided (unbounded on upper end)
Output:
- Name:
output - Shape:
[2, 3, 32, 32] - Data type: int64
Operation:
Clips input values to be >= -100 (no upper bound).
Performance:
- v1.20.0: baseline
- v1.21.0: regression observed
Regression Characteristics
- Data type specific: int64 input and bounds
- Partial bounds: Only minimum bound specified (no maximum)
- Moderate tensor size: 6,144 elements (2×3×32×32)
- 4D input tensor: Standard tensor shape for vision-related operations
To reproduce
-
Download zip
-
Run benchmark using the provided script:
python profile_operator.py clip_13_v2_clip_int64_no_max 1.20.0 1.21.0
[Archive.zip](https://github.com/user-attachments/files/24695593/Archive.zip)
### Urgency
_No response_
### Platform
Linux
### OS Version
Ubuntu 24.04.3 LTS
### ONNX Runtime Installation
Released Package
### ONNX Runtime Version or Commit ID
1.21.0
### ONNX Runtime API
Python
### Architecture
X64
### Execution Provider
Default CPU
### Execution Provider Library Version
_No response_
### Model File
_No response_
### Is this a quantized model?
Yes
Metadata
Metadata
Assignees
Labels
performanceissues related to performance regressionsissues related to performance regressions